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Abstract

We present in this work an application to Titan, Saturn’s satellite of the transposable planetary general circulation model (PGCM),

which was developed based on the second version of the Community Atmosphere Model (CAM2) of NCAR. The PGCM is a spectral

model with the sigma coordinate (where s is the pressure normalized to its surface value, commonly used as a vertical coordinate in

general circulation models) and is integrated in time using the semi-implicit leapfrog scheme. The horizontal resolutions of the model are

based on 128 points in longitude and 64 points in latitude, and the vertical discretization is of 26 s-levels. In Titan’s conditions we apply

the PGCM to simulate Titan’s general circulation in this study. Some interesting phenomena such as equatorial superrotation, vertical

meridional circulations, vertical structure, etc. are well replicated. This demonstrates the good performance and applicability to Titan of

our model and provides a foundation for further studies on simulating and understanding Titan’s general circulation and its variability

by coupling the physical processes. The features of Titan’s circulation under the condition of the Earth’s rotation rate are also

investigated. The results suggest that different rotation rates can significantly affect the dynamical structure of Titan’s circulation.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

General circulation models (GCMs) are important tools
in understanding different planetary atmospheric struc-
tures, their evolution and related processes. GCMs have
already been widely used to simulate the general circulation
on Earth. For Mars, one of the first attempts was made by
Leovy and Mintz (1969). Since then, Martian GCMs have
been mainly developed at the NASA Ames Research
Center (e.g., Pollack et al., 1981, 1990, 1993; Haberle et al.,
1993, 1999, 2003; Barnes et al., 1993, 1996; Murphy et al.,
1995; Hollingsworth and Barnes, 1996). After the mid-
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1990s, several Martian GCMs were developed mainly at
the Geophysical Fluid Dynamics Laboratory (GFDL)
(e.g., Wilson and Hamilton, 1996, Wilson et al., 1997),
Oxford University and Laboratoire de Météorologie
Dynamique (LMD) (e.g., Forget et al., 1999; Lewis et al.,
1999). More similar studies were conducted at the
Hokkaido University (Takahashi et al., 2003, 2004) and
the Center for Climate System Research (CCSR, Univ. of
Tokyo)/National Institute for Environmental Studies
(NIES) in Japan (Kuroda et al., 2005), the York University
in Canada (e.g., Moudden and McConnell, 2005), and the
Max Planck Institute for Solar System Research in
Germany (e.g., Hartogh et al., 2005, 2007). Same as for
the Martian atmosphere, the atmosphere of Venus has also
been simulated using GCM. Before the mid-1990s many
scenarios of the Venus atmosphere have been proposed by
some GCMs (e.g., Young and Pollack, 1977; Rossow,
1983; Del Genio et al., 1993; Del Genio and Zhou, 1996).
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Thereafter, the GCM of the CCSR/NIES (e.g. Yamamoto
and Takahashi, 2003, 2004) and the United Kingdom
Meteorological Office Unified Model (e.g., Lee et al., 2005,
2007) have also been applied to the Venus atmosphere.

In this research, we studied Titan’s atmosphere, the
target of several other numerical simulations by GCMs.
Titan’s GCMs are mainly developed at the LMD (e.g.,
Hourdin et al., 1995; Lebonnois et al., 2003; Rannou et al.,
2004; Luz et al., 2003) and Cologne University (e.g.,
Tokano et al., 1999; Tokano and Lorenz, 2006). Recently,
a new planetary atmospheric numerical model—called
Planet WRF (the Planetary Weather Research and Fore-
casting model)—has been developed. It has been applied to
Mars, Venus, and Titan (Richardson et al., 2007). In
addition, Dowling et al. (1998) developed the explicit
planetary isentropic-coordinate (EPIC) atmospheric model
to simulate the atmosphere of the four gas giant planets
and the middle atmospheres of all planets in 1998.
Recently, this model has also been applied to terrestrial
atmospheres (Dowling et al., 2006).

All the GCMs mentioned above are used to simulate the
planetary atmospheres from extensive aspects. The major
concerns of simulating the Martian atmosphere by the
GCM are dust cycle simulation (e.g., Basu et al., 2004), the
general circulation of Martian atmosphere (temperature,
pressure, wind velocity, etc.) (e.g., Pollack et al., 1990,
1993; Haberle et al., 1993; Forget et al., 1999; Hartogh
et al., 2007), the tracer (dust and water ice cloud)
distribution and its influences on the thermal and
dynamical structure of Martian atmosphere (e.g., Wilson
et al., 1997; Montmessin et al., 2004), and the global dust
storm (e.g. Basu et al., 2006). The simulation of Venus’
atmosphere was mainly focused on reproducing the super-
rotation (e.g., Yamamoto and Takahashi, 2003, 2004; Lee
et al., 2007). On the other hand, the Titan studies mainly
focus on the vertical circulation (e.g., Hourdin et al., 1995;
Grieger et al., 2004; Tokano and Lorenz, 2006), the
superrotaion in the stratosphere (Hourdin et al., 1995;
Grieger et al., 2004), the feedback due to haze distribution
on circulation (e.g., Rannou et al., 2004), the hemispheric
asymmetry of temperature and haze (e.g., Tokano et al.,
1999; Lebonnois et al., 2003; Luz et al., 2003), etc. All of
these previous studies have improved our understanding
of the physical processes occurring on different planets.
However, some drawbacks and limitations of these models
should be noted. First of all, these models are grid-point
models except for the GCMs of the Hokkaido University
(Takahashi et al., 2004) and the CCSR NIES of Japan
(Kuroda et al., 2005). The GCMs are divided into grid-
point models and spectral models according to different
discretization and numerical methods used to resolving
partial differential equations of the GCMs. Compared with
grid-point models, spectral models (the horizontal aspects
in the GCM are treated by the spectral-transform method)
have advantages in at least three aspects. Firstly, spectral
models have better computational precision and stability
than that of the grid-point models. Secondly, spectral
models can automatically and completely filter the high-
frequency noises caused by converging meridians in
spherical coordinates at high latitudes. The high-frequency
noises are usually removed by the use of polar filtering in
grid-point models, but the polar filters have side effects.
Moreover, spectral models can provide uniform spatial
resolution over the entire surface of the sphere more easily
than grid-point models which employ reduced or other
special grids (e.g., Randall et al., 1998). Thirdly, the
spectral models can choose a longer time step-size and as a
result save computational time. Furthermore, some of the
current models could not be easily transplanted to different
platforms of operating systems.
In addition to these advantages of the spectral models

over the grid-point models, a three-dimensional (3D)
model that can be run in parallel approach on the
multiprocessor computer system is needed to simulate 3D
structures of general circulations and understand their
long-term evolution (which requires long-term integration,
especially for Titan). Taking all these factors into account,
the NCAR’S Community Atmosphere Model (CAM2)
(Collins et al., 2003) is adapted to different planetary
environments for the first time in this study. We call it
‘‘planetary general circulation model’’ or PGCM. The
PGCM is a spectral model that can be adapted to different
planetary atmospheres and can be run in parallel on
different platforms of operating systems. We expect
that the PGCM could be used to further study some
characteristics and physical processes of various planetary
atmospheres.
We present in this work the performances of the PGCM

when applied to Titan. The paper is organized as follows.
The model is described in Section 2. Section 3 presents the
experimental design for a preliminary simulation of Titan’s
atmosphere (LMD Titan’s GCM (Rannou et al., 2005) is
also introduced briefly in this section). Section 4 discusses
the results from this preliminary simulation of Titan’s
atmosphere by the PGCM, and Section 5 provides a
general summary and conclusions.

2. Model description

The PGCM is a spectral model in which the horizontal
representation of an arbitrary variable consists of a
truncated series of spherical harmonic functions, while its
basic framework is based on the CAM2. Moreover,
the PGCM adopts the sigma coordinate (in the sigma
coordinate, s is the pressure normalized to its surface
value, is commonly used as a vertical coordinate in GCMs)
and is integrated in time using the semi-implicit leapfrog
scheme. The detailed features of the CAM2 are presented
in Collins et al. (2003). To apply it to other planetary
atmospheres, some modifications were made on the CAM2
as follows.
Firstly, since different planets have specific environ-

ments, changes were made to the model to adjust to these
environments (e.g., Mars, Titan and Venus): radius of the
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planet, acceleration of gravity, solar constant, components
of the atmosphere, orbital elements (eccentricity and angle
of equator inclination) and calendar (generalized planetary
timing: longitude of the Sun is used here). These
parameters are placed in a single file except for the
calendar (the corresponding model codes are compiled in
another file). In this way these parameters can be easily
modified for different planets. The stability and time of
integration has a close relation with the modifications
of these parameters. Secondly, there is a small amount of
water vapor on the other planets compared to the Earth.
Furthermore, although there are ‘hydrological’ cycles of
various substances (Schaller et al., 2007), their under-
standing in the different planetary atmospheres remains
limited. Were we to adopt a coarse convective parameter-
ization, we would not bring further insights to the problem.
Therefore, dry convective adjustments are applied while the
moisture process in the model is temporarily ignored.
Thirdly, due to different vertical structures of the pressure
field on different planets, the model’s vertical levels had to
be adjusted. With Titan as our main objective, Table 1
gives the adjusted sigma (pressure/surface pressure) and
approximate pressure levels (mbar) in the PGCM.
Obviously, this modification is adequate for the vertical
structure of pressure on Titan. At present, considering the
stability and time of integration required by the model, we
temporarily do not adjust the number of model levels but
the level values.
Table 1

Sigma (pressure/surface pressure) and approximate pressure levels (mbar)

in the PGCM

Number of levels s levels Pressure levels

1 6.567e�4 6.498e�2

2 3.280e�3 1.905

3 1.062e�2 7.935

4 2.262e�2 23.935

5 3.696e�2 43.935

6 5.311e�2 66.935

7 7.006e�2 92.409

8 8.543e�2 117.769

9 1.005e�1 138.549

10 1.183e�1 162.995

11 1.391e�1 191.756

12 1.637e�1 225.591

13 1.925e�1 265.396

14 2.265e�1 312.224

15 2.665e�1 367.316

16 3.135e�1 432.128

17 3.688e�1 508.376

18 4.339e�1 598.078

19 5.105e�1 703.608

20 6.005e�1 827.758

21 6.968e�1 973.815

22 7.877e�1 1116.574

23 8.672e�1 1246.532

24 9.296e�1 1394.473

25 9.706e�1 1455.832

26 9.926e�1 1488.834
Due to a relatively even topography on Titan (Radebaugh
et al., 2007) the ground morphology does not change the
global surface wind pattern except for a significant impact
on the wind pattern near the surface locally (such as
Xanadu or Tsegihi) (Tokano, 2008). Therefore, the
topography is temporarily not considered in the model
and in this case the vertical coordinate is changed from
a hybrid coordinate to a sigma coordinate. However,
topography could be taken into account in the model in the
future. Furthermore, to avoid instabilities due to changes
of radius of the planet and vertical resolution the time
step size is modified to 10min from 20min according to
the Courant–Friedrichs–Lewy (CFL) stability criterion
(that is the maximum velocity multiplied by time step size
should less than the space time step size). In short, the
model grids are based on 64 latitude Gaussian points and
128 longitude points (2.81251 intervals) in the horizontal
plane, and the vertical resolution is 26 layers with s-levels.
The dynamical equations are integrated with a time step
of 10min.
From a practical point of view, the PGCM is fully

capable to operate on different sorts of computers such as
IBM-SP, SGI-Origin, Solaris, Compaq-alpha-cluster and
Linux-PC. As noted, the PGCM differs from the CAM2
mainly as concerns the orbital constants, the adoption of
generalized planetary timing, the vertical levels, the vertical
coordinates, the time step size and some constants and
parameterizations of physical processes.

3. Experimental design

Titan is the largest moon of Saturn. A thick reddish-
brown photochemical smog hides the surface in the optical
range. It is an Earth-size moon. Many investigations have
been focused on Titan’s atmosphere (for those related to
this work see for instance Bézard et al., 1995; Coustenis
and Bézard, 1995; Hourdin et al., 1995; Tokano et al.,
1999; Tokano and Lorenz, 2006; Grieger et al., 2004;
Rannou et al., 2004; Zhu and Strobel, 2005; Coustenis
et al., 2007; Lavvas et al., 2007a, b; Richardson et al.,
2007). These studies mainly focus on the vertical circula-
tion, the superrotation in the stratosphere, the feedback
due to haze distribution on circulation, the hemispheric
asymmetry of temperature and haze, etc. The PGCM is
also employed to simulate Titan’s atmospheric circulation
and investigate the effects of different Titan rotation rates
on Titan’s atmospheric circulation.
To test the dynamical core of the model and to simplify

the problem, the detailed radiative, turbulence and moist
convective parameterizations are replaced with very simple
forcing and dissipation (Held and Suarez, 1994; Williamson
et al., 1998). The upper boundary condition is not con-
fined. The only specified dissipation is a simple linear
damping of the velocities. This damping is non-zero only in
layers near the surface (s40.9). Along the same line of
thought in the work by Herrnstein and Dowling (2007) and
Lee et al. (2007), temperatures are relaxed to a prescribed
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Fig. 1. Latitude–pressure cross-section of the prescribed temperature field used in the PGCM experiments. Unit: K.
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temperature field (Fig. 1). The radiative relaxation co-
efficients (KT) and the Rayleigh friction coefficients
(Kv) are given by KT ¼ Ka+(Ks�Ka)max(s�sb/1�sb)cos

4

f and Kv ¼ Kf max(0, s�sb/1�sb), respectively, where
sb ¼ 0.9, Kf ¼ 1 titan day�1, Ka ¼ 1/40 titan day�1 and
Ks ¼ 1/4 titan day�1. The PGCM starts out with an ideal
gas atmosphere over a rotation spherical surface. There is
no topography, in the sense that the surface is at constant
geopotential height. Besides testing the dynamical core of
the PGCM, the behavior of Titan’s circulation under the
conditions of the Earth’s rotation rate (angular velocity) is
the other emphasis in this study. In this case we could
understand some effects of different Titan rotation rates
on the structure of Titan’s circulation. Therefore, two
experiments are carried out in this study. One is a control
run which is performed under Titan-like conditions. The
other is a sensitivity run which is performed under the
same conditions as the control run but for the Earth’s
rotation rate.

To shorten the spin-up time, the initial atmospheric state
is provided by the Titan GCM of LMD (Rannou et al.,
2005). Fig. 2 provides the model’s spin-up phase. Fig. 2a
shows the time evolution of the planetary averaged
dimensionless angular momentum of the four atmospheric
layers (surface—200, 200–100, 100–10 and 10–1mbar
which correspond to troposphere, near tropopause, lower
stratosphere and upper stratosphere, respectively). The
planetary averaged dimensionless angular momentum is an
index of atmospheric rotation which is defined as the ratio
of the specific angular momentum a cosf(u+aO cosf) to
the mean specific angular momentum of the atmosphere at
rest 2a2O/3 (Hourdin et al., 1995). The atmospheric
conditions of these four layers all reach steady-state
regimes after 4 Titan years. At the end of the simulation,
this rotation index is of the order of 10 in the upper
stratosphere, which means that at this level the atmosphere
rotates 10 times faster than the solid planet in terms of
mean angular momentum. The vertical integration of the
atmospheric kinetic energy per unit mass reaches the
steady-state regime after 4 Titan years (Fig. 2b). Although
there is a different spin-up phase in the first two Titan years
between zonal-mean wind at 40 and 140 km above the
equator (Fig. 2c and d), they both reach steady-state
regimes after 4 Titan years. Therefore, to achieve a steadier
result, we run the PGCM for 6 Titan years. Furthermore,
the results of the sixth Titan year are used to analyze the
Titan-like atmospheric climatological circulation.
The diurnal cycle and gravitational tide effects are not

included since the LMD’s Titan GCM is a two-dimensional
circulation model. It is a grid-point model. The model grid
is based on 49 latitude points (3.751 intervals), with 55
vertical layers. The dynamical equations are integrated
with a time step of 3min (Rannou et al., 2005). This model
includes the interaction between dynamics, haze, chemistry
and radiative transfer. Gaseous infrared cooling rates are
computed from prescribed uniform descriptions of CH4,
H2, C2H2 and C2H6 (Hourdin et al., 2004). Haze
production parameterization is not taken into account.
The LMD’s Titan GCM could simulate some observed
features of the zonal-mean circulation on Titan such as the
zonal-mean atmosphere state (wind, temperature, etc.), the
zonal-mean haze structure and the zonal-mean chemical
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Fig. 2. (a) Time evolution of the planetary average of the dimensionless angular momentum; (b) same as (a) but for a planetary average of the vertical

integration of atmospheric kinetic energy per unit mass. Unit: 108m2 s�2; (c) same as (a) but for zonal-mean zonal winds at 40 km above the equator. Unit:

m s�1; (d) same as (a) but for zonal-mean zonal winds at 140 km above the equator. Unit: m s�1.
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species distributions (Rannou et al., 2005). The results of
the PGCM can be compared with those of the LMD’s
Titan GCM at the same level. Meanwhile, this comparison
also provides some information on differences between the
results of a spectral model and those of a grid-point model.
Note that the seasonal change cannot be included in this
study because the temperatures of the PGCM are relaxed
to a prescribed temperature field step by step (Fig. 1),
although previous studies have given a lot of attention to
the meridional circulation at solstice and equinox (e.g.,
Tokano et al., 1999; Richardson et al., 2007). In this paper,
we retrieve results only on the annual mean atmospheric
circulation.

4. Preliminary simulation of Titan’s atmosphere

Fig. 3 illustrates the annual zonal-mean meridional
circulation of the PGCM control run (Fig. 3a), LMD
model (Fig. 3b) and PGCM sensitivity run (Fig. 3c).
Fig. 3a shows that in each hemisphere there is a Hadley
circulation cell over low latitudes (over approximately
45–01S or 0–451N) and a high-latitude circulation (over
approximately 90–451S in the Southern Hemisphere or
45–901N in Northern Hemisphere) in the troposphere.
Similar results are also shown by the LMDmodel (Fig. 3b),
whereas the circulation pattern in the PGCM control run
(Fig. 3a) are significantly more regular than those in the
LMD model (Fig. 3b). The results from the PGCM control
run in the troposphere agree with the results of Hourdin
et al. (1995) and Rannou et al. (2004). If we assume that
the Titan’s rotation rate takes the Earth’s rotation rate
(Fig. 3c), the vertical structure of meridional circulation in
the troposphere is distinct from that in the PGCM control
run (Fig. 3a); that is, there are three cells in each
hemisphere in the PGCM sensitivity run, which is similar
to that in the Earth’s case. Obviously, the weak polar cells
could be found over the two polar caps in the PGCM
sensitivity run. Furthermore, there are a series of cells in
the planetary boundary layer below 1000mbar (Fig. 3a
and b), which is also quite different from the case of the
condition of the Earth’s rotation rate (Fig. 3c). However,
the series of cells simulated by the LMD’s Titan GCM and
the PGCM in the planetary boundary layer, as mentioned
above, need to be further validated. The results imply that
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Fig. 3. The simulated annually zonal-mean meridional circulation (streamline) of Titan in both latitude–pressure and latitude–height coordinates: (a) the

PGCM control run; (b) the LMD Titan’s GCM; (c) same as (a) but for the case of the Earth’s rotation rate.
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the meridional vertical circulation in the troposphere could
be significantly changed by the magnitudes of the different
Titan rotation rates. In the stratosphere, both the PGCM
control run (Fig. 3a) and the LMD model (Fig. 3b) show
that two ascending branches approximately lie over
mid-latitudes in two hemispheres and three descending
branches are located over Titan’s equator and over the two
polar regions. There is no significant difference in
meridional vertical circulations in the stratosphere between
the PGCM control run (Fig. 3a) and the PGCM sensitivity
run (Fig. 3c), implying that the effect of different Titan
rotation rates on the meridional circulation in the strato-
sphere may not be very important. However, this hypoth-
esis needs to be further confirmed by more numerical
experiments.

Fig. 4 presents the annual zonal-mean temperature fields
of the PGCM control run, LMD model and PGCM
sensitivity run. The difference in the zonal-mean tempera-
ture field between the PGCM control run (Fig. 4a) and the
PGCM sensitivity run (Fig. 4c) is not obvious because both
their temperature fields are relaxed to the same tempera-
ture field (Fig. 1), a similar case can also be found in the
annual zonal-mean vertical profile of temperature over
Titan’s equator (Fig. 5a and b). By comparing Fig. 4a with
Fig. 4b, we observe that the meridional temperature
gradient of PGCM in the troposphere is larger than that
of the LMD’s Titan GCM, whereas the situation is
contrary to the stratosphere. Moreover, temperatures of
the PGCM are higher (around 10K) than those of the
LMD model from the surface up to 20mbar, whereas
the contrary applies over 501S–501N from 20 to 2mbar.
The atmosphere over the high latitudes and polar caps in
the PGCM is found to be warmer than that in the LMD
model. The annual zonal-mean temperature field of the
LMD model (Fig. 4b) does not exhibit significant hemi-
spheric contrast in the stratospheric temperature although
much attention has been given to the pronounced hemi-
spheric asymmetry of Titan’s stratospheric temperatures at
solstice and equinox (e.g., Flasar and Conrath, 1990;
Bézard et al., 1995; Tokano et al., 1999). The hemispheric
asymmetry of the stratospheric temperature on Titan
cannot be simulated by the PGCM either (Fig. 4a) because
of the hemispheric symmetry of the prescribed temperature
field. Undoubtedly, simulating the pronounced hemi-
spheric asymmetry of the Titan’s stratospheric temperature
in the model is an extremely important issue in the future
study. At closer inspection, a remarkable difference in the
simulation of the vertical profile of the annual zonal-mean
temperature over Titan’s equator (Fig. 5a) can be found
that the altitude of the tropopause simulated over tropics
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Fig. 4. The simulated annually zonal-mean temperature field in both latitude–pressure and latitude–height coordinates: (a) the PGCM control run; (b) the

LMD Titan’s GCM; (c) same as (a) but for the case of the Earth’s rotation rate. Unit: K.

Fig. 5. The simulated vertical profiles of annually zonal-mean temperature at Titan’s equator: (a) the PGCM control run (solid line) and the LMD Titan’s

GCM (dashed line); (b) same as (a) but for the PGCM sensitivity run. Unit: K.

X. Liu et al. / Planetary and Space Science 56 (2008) 1618–16291624
by the PGCM (approximately at 130mbar) is lower than
that by the LMD model (at about 70mbar). Meanwhile,
the simulated temperature lapse rates in the two models are
almost equal although there is about 10K difference
between them in the troposphere, as mentioned above.
The result of the PGCM simulation for the temperatures
may be strongly associated with the prescribed temperature
field used here and could be improved probably by
adopting a more rational prescribed temperature field
(e.g., the observed climatological temperature field).
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Fig. 6. The simulated annually zonal-mean zonal wind field in latitude–pressure and latitude–height coordinates: (a) the PGCM control run; (b) the LMD

Titan’s GCM; (c) same as (a) but for the case of the Earth’s rotation rate. Unit: m s�1.

Fig. 7. The simulated vertical profiles of annually zonal-mean zonal wind

at the Titan’s equator. LMD GCM, PGCM CR and PGCM SR stand for

the LMD Titan’s GCM (solid line), the PGCM control run (long dashed

line) and the PGCM sensitivity run (short dashed line). Unit: m s�1.
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A notable feature of the upper stratosphere of Titan is
the superrotation phenomenon over the tropics which has
been observed (e.g., Hubbard et al., 1993; Bird et al., 2005)
and investigated (e.g., Zhu and Strobel, 2005). Our PGCM
was able to simulate the superrotation with a magnitude
approximately of 108m s�1 in the upper stratosphere
(Fig. 6a), which is very close to the observations (Bird
et al., 2005). However, this magnitude is weaker than that
(�140m s�1) shown by the LMD’s Titan GCM (Fig. 6b).
The zonal winds in the troposphere and lower stratosphere
in the PGCM control run are evidently stronger than those
in the LMD model. At the surface the winds are very weak
easterlies in both models (Fig. 6a and b). This is consistent
with the observed Titan surface winds (Bird et al., 2005).
A difference in the zonal wind structure in the upper
stratosphere between the two models is that the PGCM
control run shows a hemispheric symmetric zonal wind
field, whereas the LMD model displays a hemispheric
asymmetric structure. The Titan’s rotation rate may be
an important factor which causes the superrotation in
Titan’s stratosphere because the zonal winds (�30m s�1) to
become very weak assuming the Earth’s rotation rate
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Fig. 8. The simulated annually zonal-mean meridional wind field in both latitude–pressure and latitude–altitude coordinates: (a) PGCM control run; (b)

LMD Titan’s GCM; (c) same as (a) but for the case of the Earth’s rotation rate. The shaded areas indicate the northerly winds. Unit: 10�3m s�1.
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(Figs. 6c and 7). In addition, compared to Fig. 6a,
strengthened easterly wind can be seen under the condition
of the Earth’s rotation rate (Fig. 6c) over the equator near
the surface.

Fig. 7 shows the simulated vertical wind profile at the
equator in the PCGM and the LMD models. A minimum
zonal wind was found around the tropopause, where the
strong vertical wind shear is also detected. Indeed, the
observational analysis of the vertical profile of winds on
Titan (Bird et al., 2005) shows that there is a layer with
slow wind (o3m s�1) at altitudes between 60 and 100 km.
This feature is not simulated well by our PGCM, which
could be due to an insufficient number of vertical layers in
the stratosphere in the model (just with five layers over
60mbar, see Table 1). This needs to be tested in the future.
In addition, it could be associated with the prescribed
temperature field in the model.

The simulated annual zonal-mean meridional wind fields
are shown in Fig. 8. In the lower level of the troposphere
(�1000mbar) convergence regions of airflow are located
over the tropics and two polar regions and divergence
regions of airflow are situated in mid-latitudes, respectively
(Fig. 8a and b). The opposite situations are presented at the
tropopause. There are besides irregular structures of the
meridional wind field corresponding to a series of cells
below 1000mbar in Fig. 3a and b. The situation in the
troposphere under the condition of the Earth’s rotation
rate (Fig. 8c) is distinct from that in the PGCM control
run. As shown in Fig. 8c, in the lower level of the
troposphere (�1000mbar), the divergence regions of air-
flow are located over the two polar regions and the regions
around 451S and 451N, and the convergence regions of
airflow are situated over the equator and the regions
around 801S and 801N, respectively. The opposite situa-
tions are presented in the upper troposphere. However,
there is no evident difference in the meridional winds in the
stratosphere between the PGCM control run (Fig. 8a) and
the PGCM sensitivity run (Fig. 8c).
Fig. 9 presents the simulated departure from the zonal-

mean geopotential height fields which are the departures
from the average of the whole layer. The basic structures
of geopotential height field from the PGCM control run
(Fig. 9a) and the LMD Titan’s GCM (Fig. 9b) are similar
to each other but their magnitudes. The geopotential height
over the tropics is stronger than that over high latitudes.
The departures from the geopotential height in the PGCM
control run are larger than those in the LMD’s Titan
GCM below 30mbar, while the situation is opposite above
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Fig. 9. The simulated annually zonal-mean geopotential height field in both latitude–pressure and latitude–altitude coordinates: (a) PGCM control run;

(b) LMD Titan’s GCM; (c) same as (a) but for the case of the Earth’s rotation rate. Departures from the average of the whole layer are shown. Unit:

103 gpm.
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30mbar. There is no significant difference between Fig. 9a
and c except for the areas approximately from 300 to
100mbar and above 3mbar over two polar caps. It seems
that the different Titan rotation rates may not cause larger
differences in the geopotential height field.

5. Conclusions and discussion

The transplantable PGCM based on the earth-represen-
tative CAM2 is developed to simulate other planetary
atmospheres. In this research we test the basic performance
of the PGCM by simulating Titan’s atmospheric circula-
tion. The results of the PGCM model are compared
with those of the LMD model. Moreover, the features of
Titan’s circulation when assuming the Earth’s rotation rate
are investigated to search for possible influences of the
rotation rate on Titan’s circulation. The PGCM is able to
adequately simulate basic circulation structures of Titan,
e.g., the equatorial superrotation (�108m/s) in the Titan’s
stratosphere, vertical meridional circulations, some vertical
profiles, easterly wind near the surface, etc. The magnitude
of the Titan’s rotation rate can significantly affect the
dynamical structure of the Titan’s circulation. The westerly
winds of a whole layer are weakened, but the easterly winds
are strengthened near the surface, when the rotation rate of
Titan is changed to that of the Earth. The effects of the
different Titan rotation rates on the meridional circulation
mainly pertain to the troposphere. Furthermore, when the
Earth’s rotation rate is assumed, three cells are present in
the troposphere in the two hemispheres, whereas only two
cells occur for the Titan’s rotation rate.
This preliminarily work demonstrates the good per-

formance of the PGCM and provides a foundation for
further work in simulating and understanding Titan’s
general circulation and its variability through coupling the
physical–chemical processes.
In this paper the detailed radiative, turbulence and moist

convective parameterizations are replaced with very simple
forcing and dissipation, thus seasonal variation and hemi-
spheric asymmetry of the stratospheric temperature cannot
be properly simulated. Major attention is devoted to the
dynamic core of the model. However, our PGCM should
include a more complex physical framework in the future.
Further numerical experiments should be conducted to
assess the sensitivity of the simulations to arbitrary
parameters in the future. It is within our future aims to
couple and investigate physical and chemical processes in
the model in order to better simulate and understand
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Titan’s circulation, its variations and relevant phenomena
by the model.
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